On Complete Cone Metric Space and Fixed Point Theorem

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Common Fixed Point Theorem In Complete Metric Space

We prove a unique common fixed-point theorem for two pair of weakly compatible maps in a complete metric space, which generalizes the result of Brian Fisher by a weaker condition such as weakly compatibility instead of compatibility and contractive modulus instead of continuity of maps.

متن کامل

$S$-metric and fixed point theorem

In this paper, we prove a general fixed point theorem in $textrm{S}$-metric spaces for maps satisfying an implicit relation on complete metric spaces. As applications, we get many analogues of fixed point theorems in metric spaces for $textrm{S}$-metric spaces.

متن کامل

New fixed and periodic point results on cone metric spaces

In this paper, several fixed point theorems for T-contraction of two maps on cone metric spaces under normality condition are proved. Obtained results extend and generalize well-known comparable results in the literature.

متن کامل

A Fixed Point Theorem for Correspondences on Cone Metric Spaces

In this paper, we prove that if f is a contractive closed-valued correspondence on a cone metric space (X, d) and there is a contractive orbit {xn} for f at x0 ∈ X such that both {xni} and {xni+1} converge for some subsequence {xni} of {xn}, then f has a fixed point, which generalizes a fixed point theorem for contractive closed-valued correspondences from metric spaces to cone metric spaces.

متن کامل

Fixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space

In this paper, we shall establish some fixed point theorems for mappings with the contractive  condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M,N,*,lozenge)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of $A$-contraction mapping on metric space. In this paper by using the main idea of the work...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Scientific Research

سال: 2011

ISSN: 2070-0245,2070-0237

DOI: 10.3329/jsr.v3i2.6475